Get environmental variables at each occurrence and pseudo-absence point location
Source:R/get_modelfit_table.R
get_modelfit_table.Rd
Get the environmental variables for each species occurrences and pseudo-absences at given point locations by extracting the environmental information from the prediction table produced from the get_predict_table function see also help(get_predict_table).
Usage
get_modelfit_table(
data,
spec,
lon,
lat,
pseudoabs = NULL,
subc,
predict_table,
mod_fit_table,
read = TRUE,
quiet = TRUE
)
Arguments
- data
a data.frame or data.table that contains the columns regarding the species name and the longitude / latitude coordinates in WGS84.
- spec
character. The name of the column with the species names.
- lon
character. The name of the column with the longitude coordinates.
- lat
character. The name of the column with the latitude coordinates.
- pseudoabs
integer. number of pseudo-absences
- subc
character. Full path to the sub-catchment .tif file with the sub-catchment ID.
- predict_table
character. Full path of the predict.csv table (i.e., output of get_predict_table); see also help(get_predict_table)
- mod_fit_table
character. Full path of the output.csv table, i.e., the model fit table file.
- read
logical. If TRUE, then the model .csv table gets read into R as data.table and data.frame. if FALSE, the table is only stored on disk. Default is FALSE.
- quiet
logical. If FALSE, the standard output will be printed. Default is TRUE.
Examples
# Download test data into the temporary R folder
# or define a different directory
my_directory <- tempdir()
download_test_data(my_directory)
# Load occurrence data
# Define full path to the sub-catchments raster layer
# Define full path to the prediction table
predict_tbl <- paste0(my_directory,
"/hydrography90m_test_data/projectionTB.csv")
# Define full path to the output model fit table
model_fit <- paste0(my_directory,
"/hydrography90m_test_data/model_table.csv")
# Get table with environmental variables at each occurrence
# and pseudo-absence point location
modelfit_table <- get_modelfit_table(data = species_occurrence,
spec = "species",
lon = "long",
lat = "lat",
pseudoabs = 10000,
subc = subc_raster,
predict_table = predict_tbl,
mod_fit_table = model_fit)